PLoS ONE (Jan 2013)

Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response.

  • Daniel Heylmann,
  • Martina Bauer,
  • Huong Becker,
  • Stefaan van Gool,
  • Nicole Bacher,
  • Kerstin Steinbrink,
  • Bernd Kaina

DOI
https://doi.org/10.1371/journal.pone.0083384
Journal volume & issue
Vol. 8, no. 12
p. e83384

Abstract

Read online

Regulatory T cells (Treg) play a pivotal role in the immune system since they inhibit the T cell response. It is well known that cyclophosphamide applied at low dose is able to stimulate the immune response while high dose cyclophosphamide exerts inhibitory activity. Data obtained in mice indicate that cyclophosphamide provokes a reduction in the number of Treg and impairs their suppressive activity, resulting in immune stimulation. Here, we addressed the question of the sensitivity of human Treg to cyclophosphamide, comparing Treg with cytotoxic T cells (CTL) and T helper cells (Th). We show that Treg are more sensitive than CTL and Th to mafosfamide, which is an active derivative of cyclophosphamide, which does not need metabolic activation. The high sensitivity of Treg was due to the induction of apoptosis. Treg compared to CTL and Th were not more sensitive to the alkylating drugs temozolomide and nimustine and also not to mitomycin C, indicating a specific Treg response to mafosfamide. The high sensitivity of Treg to mafosfamide resulted not only in enhanced cell death, but also in impaired Treg function as demonstrated by a decline in the suppressor activity of Treg in a co-culture model with Th and Helios positive Treg. Treatment of Treg with mafosfamide gave rise to a high level of DNA crosslinks, which were not repaired to the same extent as observed in Th and CTL. Also, Treg showed a low level of γH2AX foci up to 6 h and a high level 24 h after treatment, indicating alterations in the DNA damage response. Overall, this is the first demonstration that human Treg are, in comparison with Th and CTL, hypersensitive to cyclophosphamide, which is presumably due to a DNA repair defect.