Asian Pacific Journal of Tropical Medicine (Jan 2018)

Anti-cancer effect of ethylacetate fraction from Orostachys japonicus on HT-29 human colon cancer cells by induction of apoptosis through caspase-dependent signaling pathway

  • Deok-Seon Ryu,
  • Hyun-Ji Lee,
  • Ji-Hye Kwon,
  • Dong-Seok Lee

DOI
https://doi.org/10.4103/1995-7645.233180
Journal volume & issue
Vol. 11, no. 5
pp. 330 – 335

Abstract

Read online

Objective: To investigate the anti-colon cancer effects of ethylacetate fraction from Orostachys japonicus (O. japonicus) on HT-29 cancer cells. Methods: The viability of HT-29 cells was assayed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) method. Apoptosis induction and cell cycle inhibition were confirmed by fluorescein isothiocyanate and propidium iodide staining using flow cytometry. Morphological changes in the nucleus were observed, using a fluorescence microscope with 4′,6-diamidino-2-phenylindole (DAPI) nuclear staining. The expression levels of the upstream and downstream proteins involved in the anti-cancer mechanism were confirmed by Western blotting. Results: After treating HT-29 cells with different concentrations of ethylacetate fraction from O. japonicus, the viability of cells decreased in a concentration-dependent manner, while apoptosis induction and apoptotic body formation increased. Cell cycle analysis showed that the arrest occurred at the sub-G1 and S phase. Among the upstream and downstream proteins involved in anti-cancer activity, the level of B cell lymphoma-2 decreased, and the bcl-2-associated x protein increased. The level of pro-caspase-3, pro-caspase-8, and pro-caspase-9 decreased, while the level of cleaved-caspase-3, cleaved-caspase-8, and cleaved-caspase-9 increased. Moreover, the phosphorylation, that is, activation of extracellular signal regulated kinase 1/2, Jun-N-terminal kinase, and p38 increased. Conclusions: Combining the above results, it is thought that the survival of HT-29 cells is suppressed by ethylacetate fraction from O. japonicus through mitochondrial regulation-induced caspase cascade activation, induction of apoptosis and cell cycle arrest.

Keywords