We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient to achieve a BER performance below the hard decision forward error correction threshold BER performance (<3.8 × 103), with an optical signal-to-noise ratio penalty of less than 0.3 dB compared to the original signal. Our results confirm that this is a promising platform for nonlinear optical signal processing, as a result of both very low linear propagation loss (<0.07 dB/cm) and a large material bandgap, which in turn ensures negligible nonlinear loss at telecom wavelengths.