Crystals (Sep 2020)

Effects of GaN Buffer Resistance on the Device Performances of AlGaN/GaN HEMTs

  • Ki-Sik Im,
  • Jae-Hoon Lee,
  • Yeo Jin Choi,
  • Sung Jin An

DOI
https://doi.org/10.3390/cryst10090848
Journal volume & issue
Vol. 10, no. 9
p. 848

Abstract

Read online

We investigated the effects of GaN buffer resistance of AlGaN/GaN high-electron-mobility transistors (HEMTs) on direct current (DC), low-frequency noise (LFN), and pulsed I-V characterization performances. The devices with the highest GaN buffer resistance were grown on sapphire substrate using two-step growth temperature method without additional compensation doping. The proposed device exhibited the degraded off-state leakage current due to the improved GaN buffer quality compared to the reference devices with relative low buffer resistance, which is confirmed by high resolution X-ray diffraction (HRXRD). However, the proposed device with deep-level defects in GaN buffer layer showed the reduced hysteresis (∆Vth), increased breakdown voltage (BV), and enhanced pulse I-V characteristics. Regardless of GaN buffer resistance, all devices clearly showed 1/f behavior with carrier number fluctuations (CNF) at on-state but followed 1/f2 characteristic at off-state. From the 1/f2 noise characteristics, the extracted trap time constant (τi) of the proposed device can be obtained to be 10 ms, which is shorter than those of the reference devices because of the full compensation of deep-level defects in the GaN buffer layer.

Keywords