Nature Communications (Mar 2021)

Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning

  • Xiaodong Wang,
  • Ying Chen,
  • Yunshu Gao,
  • Huiqing Zhang,
  • Zehui Guan,
  • Zhou Dong,
  • Yuxuan Zheng,
  • Jiarui Jiang,
  • Haoqing Yang,
  • Liming Wang,
  • Xianming Huang,
  • Lirong Ai,
  • Wenlong Yu,
  • Hongwei Li,
  • Changsheng Dong,
  • Zhou Zhou,
  • Xiyang Liu,
  • Guanzhen Yu

DOI
https://doi.org/10.1038/s41467-021-21674-7
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN.