Zinc Oxide Nanoparticles Foliar Application Effectively Enhanced Zinc and Aroma Content in Rice (Oryza sativa L.) Grains
Rui Wang,
Kailiang Mi,
Xijun Yuan,
Jie Chen,
Jialing Pu,
Xinyan Shi,
Yanju Yang,
Hongcheng Zhang,
Haipeng Zhang
Affiliations
Rui Wang
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Kailiang Mi
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Xijun Yuan
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Jie Chen
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Jialing Pu
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Xinyan Shi
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Yanju Yang
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Hongcheng Zhang
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Haipeng Zhang
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University
Abstract The search for an effective zinc fertilizer and its application method to effectively increase zinc content and enhance aroma in rice grains is a crucial objective. In this study, a 2-year field plot experiment was conducted to investigate the influence of ZnO NPs foliar spraying on rice quality, grain zinc and aroma content, along with exploring the physiological mechanisms underlying these effects. Our results demonstrated that the rice breakdown value and taste value of foliar spraying zinc oxide nanoparticles were improved by 31.0–41.7% and 8.2–13.0% compared with CK (control treatment involved spraying water), improving the tasting and steaming quality of rice. While Fe and Cu content in grains decreased for the application of zinc oxide nanoparticles, zinc oxide nanoparticles foliar spraying significantly increased the zinc content and accumulation of grains by 33.6–65.1% and 37.8–74.7%, respectively. Further analysis showed that the sprayed zinc oxide nanoparticles achieved effective enrichment of zinc in edible parts and increased the final bioavailability of Zn. In addition, foliar spraying of zinc oxide nanoparticles significantly increased activities of nitrate reductase and glutamine synthetase in leaves, which elevated nitrogen content in leaves and grains, and ultimately enhanced 2-acetyl-1-pyrroline (2-AP) content in grains at maturity by 6.1–21.4% compared to CK. Our findings indicated that zinc oxide nanoparticles can be practically applied as a foliar fertilizer at the gestation for quality improvement, zinc enrichment and aroma enhancement of rice grains.