Bioactive Materials (Sep 2024)

A cuttlefish ink nanoparticle-reinforced biopolymer hydrogel with robust adhesive and immunomodulatory features for treating oral ulcers in diabetes

  • Yajing Xiang,
  • Pan Zhuge,
  • Xiaoliang Qi,
  • XinXin Ge,
  • Junbo Xiang,
  • Hangbin Xu,
  • Erya Cai,
  • Yulong Lan,
  • Xiaojing Chen,
  • Ying Li,
  • Yizuo Shi,
  • Jianliang Shen,
  • Jinsong Liu

Journal volume & issue
Vol. 39
pp. 562 – 581

Abstract

Read online

Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines. However, many patients experience minimal benefits from certain medical treatments because of poor compliance, short retention times in the oral cavity, and inadequate drug efficacy. Herein, we present a novel hydrogel patch (SCE2) composed of a biopolymer matrix (featuring ultraviolet-triggered adhesion properties) loaded with cuttlefish ink nanoparticles (possessing pro-healing functions). Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light. SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species. These properties contribute to the elimination of bacteria and the management of the oxidation process, thus accelerating the healing phase's progression from inflammation to proliferation. In studies involving diabetic rats with oral ulcers, the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area, facilitating rapid re-epithelialization, and fostering angiogenesis. In conclusion, this light-sensitive hydrogel patch offers a promising path to expedited wound healing, potentially transforming treatment strategies for clinical oral ulcers.

Keywords