Nature Communications (Nov 2024)

Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus

  • Yi-Zong Lee,
  • Jerome Han,
  • Yi-Nan Zhang,
  • Garrett Ward,
  • Keegan Braz Gomes,
  • Sarah Auclair,
  • Robyn L. Stanfield,
  • Linling He,
  • Ian A. Wilson,
  • Jiang Zhu

DOI
https://doi.org/10.1038/s41467-024-54287-x
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 25

Abstract

Read online

Abstract Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identify key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we develop a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Dozens of UFC constructs are characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F structures and one hMPV-F structure), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identify three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induce robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.