Aerospace (Jan 2023)

On the Aeroelasticity of the Active Span and Passive Pitching Polymorphing Wing: Effect of Morphing Rate

  • Zawar Haider,
  • Rafic M. Ajaj,
  • Lakmal Seneviratne

DOI
https://doi.org/10.3390/aerospace10010057
Journal volume & issue
Vol. 10, no. 1
p. 57

Abstract

Read online

This paper studies the effect of morphing rate on the aeroelasticity of a polymorphing wing capable of active span extension and passive twist/pitch. A variable domain size finite element model is developed to capture the dynamic effects due to the presence of a variable span in the Euler–Bernoulli beam model, which introduces a structural damping term in the equations of motion. The effect of various morphing rates on the aeroelastic boundaries of the system, namely, flutter velocity and flutter frequency, is examined for a beam undergoing span extension and retraction, from baseline span to 25% span extension and vice versa, respectively. Three points of interest are analyzed: at the start of the span morphing, at the mid-point of morphing, and just before the morphing process ends. The parametric analysis is carried out to determine the effect of varying critical parameters, such as the elastic axis location of the outboard wing section and adjoining spring torsional rigidity on the aeroelastic boundaries of the polymorphing wing.

Keywords