PLoS Biology (May 2024)

The human auditory system uses amplitude modulation to distinguish music from speech.

  • Andrew Chang,
  • Xiangbin Teng,
  • M Florencia Assaneo,
  • David Poeppel

DOI
https://doi.org/10.1371/journal.pbio.3002631
Journal volume & issue
Vol. 22, no. 5
p. e3002631

Abstract

Read online

Music and speech are complex and distinct auditory signals that are both foundational to the human experience. The mechanisms underpinning each domain are widely investigated. However, what perceptual mechanism transforms a sound into music or speech and how basic acoustic information is required to distinguish between them remain open questions. Here, we hypothesized that a sound's amplitude modulation (AM), an essential temporal acoustic feature driving the auditory system across processing levels, is critical for distinguishing music and speech. Specifically, in contrast to paradigms using naturalistic acoustic signals (that can be challenging to interpret), we used a noise-probing approach to untangle the auditory mechanism: If AM rate and regularity are critical for perceptually distinguishing music and speech, judging artificially noise-synthesized ambiguous audio signals should align with their AM parameters. Across 4 experiments (N = 335), signals with a higher peak AM frequency tend to be judged as speech, lower as music. Interestingly, this principle is consistently used by all listeners for speech judgments, but only by musically sophisticated listeners for music. In addition, signals with more regular AM are judged as music over speech, and this feature is more critical for music judgment, regardless of musical sophistication. The data suggest that the auditory system can rely on a low-level acoustic property as basic as AM to distinguish music from speech, a simple principle that provokes both neurophysiological and evolutionary experiments and speculations.