MATEC Web of Conferences (Jan 2018)

To the solution of the problem of bending of a cylindrical shell by the boundary elements method

  • Surianinov Mykola,
  • Krutii Yurii

DOI
https://doi.org/10.1051/matecconf/201823002032
Journal volume & issue
Vol. 230
p. 02032

Abstract

Read online

The solution of the problem of the long cylindrical shell bending by a numerical and analytical boundary elements method is considered. The method is based on the analytical construction of a fundamental system of solutions and Green’s functions for the differential equation of the problem under consideration. This paper is devoted to the determination of these expressions. The semi-moment theory of the cylindrical shell calculation, proposed by V.Z. Vlasov, which for the problem under consideration leads to one eighth-order partial differential equation is used. The problem of the bending of a cylindrical shell is twodimensional, and in the numerical and analytical boundary elements method, plates and shells are considered as generalized one-dimensional modules, so the variational method of Kantorovich-Vlasov was applied to this equation to obtain an ordinary differential equation of the eighth order. Sixty-four expressions of all the fundamental functions of the problem are constructed, as well as an analytic expression for the Green’s function, which makes it possible to construct a load vector (without any restrictions on the nature of its application), and then proceed to the solution of boundary-value problems for the bending of long cylindrical shells under various boundary conditions.