PLoS ONE (Jan 2014)

Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells.

  • Xiao-Fang Liu,
  • Wen-Ting Yang,
  • Rui Xu,
  • Jun-Tian Liu,
  • Peng-Sheng Zheng

DOI
https://doi.org/10.1371/journal.pone.0087092
Journal volume & issue
Vol. 9, no. 1
p. e87092

Abstract

Read online

BACKGROUND: Although Sox2 expression has been found in several types of cancer, it has not yet been used to identify or isolate CSCs in somatic carcinoma. METHODS: SiHa and C33A cells stably transfected with a plasmid containing human Sox2 transcriptional elements driving the enhanced green fluorescent protein (EGFP) reporter were sorted into the Sox2-positive and the Sox2-negative populations by FACS, and Sox2 expression was detected by western blot and immunohistochemistry. The differentiation, self-renewal and tumor formation abilities, as well as the expression of the stemness and the EMT related genes of the Sox2-positive and the Sox2-negative cervical cancer cells were characterized in vitro and in vivo. RESULTS: A pSox2/EGFP system was used to separate the Sox2-positive and the Sox2-negative cells from cervical cancer cell lines, SiHa and C33A cells. Compared with the Sox2-negative cells, the Sox2-positive SiHa and C33A cells exhibited greater capacities for self-renewal, differentiation and tumor formation. Furthermore, Sox2-positive SiHa and C33A cells expressed higher levels of stemness-related genes, such as Sox2/Bmi-1/Oct4/ALDH1, and EMT-related genes, such as vimentin/snail/β-catenin. Taken together, all these results indicated that cells expressing endogenous Sox2 are CSCs in cervical carcinomas. CONCLUSION: This study is the first to establish a functional link between endogenous Sox2 expression and CSCs in cervical carcinomas. Additionally, this study demonstrated that it is feasible to develop a tool to isolate CSCs from somatic tumors based on the expression of the endogenous nuclear protein Sox2 instead of cell surface markers.