Frontiers in Veterinary Science (Sep 2021)

Next-Generation Intestinal Toxicity Model of Human Embryonic Stem Cell-Derived Enterocyte-Like Cells

  • Bokyeong Ryu,
  • Mi-Young Son,
  • Mi-Young Son,
  • Kwang Bo Jung,
  • Kwang Bo Jung,
  • Ukjin Kim,
  • Jin Kim,
  • Ohman Kwon,
  • Ye Seul Son,
  • Ye Seul Son,
  • Cho-Rok Jung,
  • Jae-Hak Park,
  • C-Yoon Kim

DOI
https://doi.org/10.3389/fvets.2021.587659
Journal volume & issue
Vol. 8

Abstract

Read online

The gastrointestinal tract is the most common exposure route of xenobiotics, and intestinal toxicity can result in systemic toxicity in most cases. It is important to develop intestinal toxicity assays mimicking the human system; thus, stem cells are rapidly being developed as new paradigms of toxicity assessment. In this study, we established human embryonic stem cell (hESC)-derived enterocyte-like cells (ELCs) and compared them to existing in vivo and in vitro models. We found that hESC-ELCs and the in vivo model showed transcriptomically similar expression patterns of a total of 10,020 genes than the commercialized cell lines. Besides, we treated the hESC-ELCs, in vivo rats, Caco-2 cells, and Hutu-80 cells with quarter log units of lethal dose 50 or lethal concentration 50 of eight drugs—chloramphenicol, cycloheximide, cytarabine, diclofenac, fluorouracil, indomethacin, methotrexate, and oxytetracycline—and then subsequently analyzed the biomolecular markers and morphological changes. While the four models showed similar tendencies in general toxicological reaction, hESC-ELCs showed a stronger correlation with the in vivo model than the immortalized cell lines. These results indicate that hESC-ELCs can serve as a next-generation intestinal toxicity model.

Keywords