Applied Sciences (Apr 2020)

A Novel Method of Seismic Signal Detection Using Waveform Features

  • Jian Li,
  • Mengmin He,
  • Gaofeng Cui,
  • Xiaoming Wang,
  • Weidong Wang,
  • Juan Wang

DOI
https://doi.org/10.3390/app10082919
Journal volume & issue
Vol. 10, no. 8
p. 2919

Abstract

Read online

The detection of seismic signals is vital in seismic data processing and analysis. Many algorithms have been proposed to resolve this issue, such as the ratio of short-term and long-term power averages (STA/LTA), F detector, Generalize F, and etc. However, the detection performance will be affected by the noise signals severely. In this paper, we propose a novel seismic signal detection method based on the historical waveform features to improve the seismic signals detection performance and reduce the affection from the noise signals. We use the historical events location information in a specific area and waveform features information to build the joint probability model. For the new signal from this area, we can determine whether it is the seismic signal according to the value of the joint probability. The waveform features used to construct the model include the average spectral energy on a specific frequency band, the energy of the component obtained by decomposing the signal through empirical mode decomposition (EMD), and the peak and the ratio of STA/LTA trace. We use the Gaussian process (GP) to build each feature model and finally get a multi-features joint probability model. The historical events location information is used as the kernel of the GP, and the historical waveform features are used to train the hyperparameters of GP. The beamforming data of the seismic array KSRS of International Monitoring System are used to train and test the model. The testing results show the effectiveness of the proposed method.

Keywords