Poultry Science (Jun 2024)

Lignocellulose and probiotic supplementation in broiler chicken diet: effect on growth performance, digestive health, litter quality, and genes expression

  • Mosaad. A. Soltan,
  • Ramdan S. Shewita,
  • Omaima A. Matroud,
  • Lamya Ahmed Alkeridis,
  • Samy Sayed,
  • Mustafa Shukry,
  • Set A. El-Shobokshy

Journal volume & issue
Vol. 103, no. 6
p. 103735

Abstract

Read online

ABSTRACT: Three hundred one-day-old Avian 48 broiler chicks were used to investigate the effect of lignocellulose (LC) and probiotic supplementation in broiler chicken diet on growth performance, digestive health, litter quality, and some gene expression. Experimental treatments consisted of 3 × 2 factorial arrangements with 3 levels of LC without or with probiotics to formulate 6 experimental groups. Groups 1, 2, and 3 were fed on the basal diet with dietary LC inclusion at 0, 0.5, and 1.0%, respectively, while groups 4, 5, and 6 were fed on the previously mentioned design with Bacillus subtilis at 100 gm/ton. The results revealed that Dietary LC inclusion nonsignificantly (P ≥ 0.05) reduced body weight (BW), body weight gain (BWG), and feed intake. Meanwhile, B. subtilis supplementation improved BW and BWG and enhanced the effect of LC on the broilers' weight. The group fed a 0.5% LC and B. subtilis-supplemented diet recorded the best (P ≥ 0.05) BW, BWG, FCR, PER, EEU, and PI. LC and or B. subtilis supplementation improved carcass traits of broiler (higher dressing% with lower abdominal fat% compared with a control group), intestinal health, and absorptive capacity. LC potentiates the effect of B. subtilis supplementation in broilers' diet in modulating intestinal microflora (lowered (P ≥ 0.05) cecal Coliform and increased Lactobacillus counts), the highest Coliform counts were recorded in group fed 0.5 or 1.0% LC plus B. subtilis. LC at 0.5 or 1.0% and or B. subtilis supplementation reduced (P ≥ 0.05) litter moisture% at the 2nd, 4th, and 6th wk compared to the control group. Dietary inclusion of LC and or B. subtilis supplementation significantly (P < 0.001) up-regulated hepatic growth-related genes (growth hormone receptor (GHR) and insulin growth factor1 (IGF-1)) and antioxidant-related genes (superoxide dismutase 1 (SOD1), glutathione peroxidase (GPX1) and uncoupling protein (UCP) and down-regulated (P < 0.001) splenic toll-like receptor 4 (TLRP) gene expression while had no significant effect on splenic interleukin 8 (IL8) and tumor necrosis factor (TNF) with the best-obtained results with 1.0% followed by 0.5% LC with B. subtilis supplementation. We concluded that dietary LC and/or B. subtilis supplementation positively affected the growth performance, feed efficiency, carcass quality, intestinal absorptive capacity and health, litter quality and growth, and antioxidant and immune-related gene expression.

Keywords