Printed Soft Sensor with Passivation Layers for the Detection of Object Slippage by a Robotic Gripper
Reo Miura,
Tomohito Sekine,
Yi-Fei Wang,
Jinseo Hong,
Yushi Watanabe,
Keita Ito,
Yoshinori Shouji,
Yasunori Takeda,
Daisuke Kumaki,
Fabrice Domingues Dos Santos,
Atsushi Miyabo,
Shizuo Tokito
Affiliations
Reo Miura
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Tomohito Sekine
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Yi-Fei Wang
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Jinseo Hong
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Yushi Watanabe
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Keita Ito
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Yoshinori Shouji
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Yasunori Takeda
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Daisuke Kumaki
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Fabrice Domingues Dos Santos
Piezotech S. A. S., Arkema-CRRA, Rue Henri Moissan, 63493 Pierre-Benite Cedex, France
Atsushi Miyabo
Arkema K. K., 2-2-2 Uchisaiwaicho, Chiyoda-ku, Tokyo 100-0011, Japan
Shizuo Tokito
Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 3-4-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
Tactile sensing, particularly the detection of object slippage, is required for skillful object handling by robotic grippers. The real-time measurement and identification of the dynamic shear forces that result from slippage events are crucial for slip detection and effective object interaction. In this study, a ferroelectric polymer-based printed soft sensor for object slippage detection was developed and fabricated by screen printing. The proposed sensor demonstrated a sensitivity of 8.2 μC·cm−2 and was responsive to shear forces applied in both the parallel and perpendicular directions. An amplifier circuit, based on a printed organic thin-film transistor, was applied and achieved a high sensitivity of 0.1 cm2/V·s. Therefore, this study experimentally demonstrates the effectiveness of the proposed printable high-sensitivity tactile sensor, which could serve as part of a wearable robotic e-skin. The sensor could facilitate the production of a system to detect and prevent the slippage of objects from robotic grippers.