Fluids (Nov 2021)

Impact of High Inertia Particles on the Shock Layer and Heat Transfer in a Heterogeneous Supersonic Flow around a Blunt Body

  • Andrey Sposobin,
  • Dmitry Reviznikov

DOI
https://doi.org/10.3390/fluids6110406
Journal volume & issue
Vol. 6, no. 11
p. 406

Abstract

Read online

One of the most important and complex effects associated with the presence of particles in the flow is the gas-dynamic interaction of particles with the shock layer. Of particular interest is the intensification of heat transfer by high inertia particles rebounding from the surface or by the products of erosion destruction, which reach the front of the bow shock wave and violate the gas-dynamic structure of the flow. In this case, according to experimental data, the increase in heat fluxes is much greater than it could be predicted based on the combined action of the kinetic energy of particles and a high-speed flow. The problem is related to the destruction of the flow structure. In this paper, the problem is studied with numerical simulation. We show that the key role in the intensification of heat transfer is played by the formation of an impact jet flowing onto the surface. An area of increased pressure and heat flux is formed in the zone of action of the impact jet. This effect is maintained over time by the successive action of particles.

Keywords