Molecular Therapy: Oncology (Sep 2024)
IL-12-mediated toxicity from localized oncolytic virotherapy can be reduced using systemic TNF blockade
Abstract
Cytokine therapy represents an attractive option to improve the outcomes of cancer patients. However, the systemic delivery of these agents often leads to severe immune-related toxicities, which can prevent their efficient clinical use. One approach to address this issue is the use of recombinant oncolytic viruses to deliver various cytokines directly to the tumor. This improves the biodistribution of the secreted cytokine-transgenes, both augmenting antitumor immune responses and decreasing systemic toxicities. We have shown recently that a doubly recombinant oncolytic myxoma virus that secretes a soluble version of PD1 as well as an interleukin-12 (IL-12) fusion protein (vPD1/IL-12) can cause potent regression of disseminated cancers. Here we show that, despite the predominant localization of both transgenes within the infected tumor, treatment with vPD1/IL-12 still results in systemic, IL-12-mediated toxicities. Interestingly, these toxicities are independent of interferon-γ and instead appear to be mediated by the interaction of tumor necrosis factor α with tumor necrosis factor receptor 2 on hematopoietic cells. Critically, this unique mechanism allows for vPD1/IL-12-mediated toxicities to be alleviated through the use of US Food and Drug Administration (FDA)-approved tumor necrosis factor (TNF) blockers such as etanercept.