Activity modulation of the Escherichia coli F1FO ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering
Marcin Makowski,
Víctor G. Almendro-Vedia,
Marco M. Domingues,
Octavio L. Franco,
Iván López-Montero,
Manuel N. Melo,
Nuno C. Santos
Affiliations
Marcin Makowski
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
Víctor G. Almendro-Vedia
Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps Juan XXIII 1, 28040 Madrid, Spain; Universidad Complutense de Madrid, Departamento de Química Física, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
Marco M. Domingues
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
Octavio L. Franco
Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 71966-700 Federal District, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, 79117-900 Mato Grosso do Sul, Brazil
Iván López-Montero
Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps Juan XXIII 1, 28040 Madrid, Spain; Universidad Complutense de Madrid, Departamento de Química Física, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; Corresponding author
Manuel N. Melo
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Corresponding author
Nuno C. Santos
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Corresponding author
Summary: Most antimicrobial peptides (AMPs) exert their microbicidal activity through membrane permeabilization. The designed AMP EcDBS1R4 has a cryptic mechanism of action involving the membrane hyperpolarization of Escherichia coli, suggesting that EcDBS1R4 may hinder processes involved in membrane potential dissipation. We show that EcDBS1R4 can sequester cardiolipin, a phospholipid that interacts with several respiratory complexes of E. coli. Among these, F1FO ATP synthase uses membrane potential to fuel ATP synthesis. We found that EcDBS1R4 can modulate the activity of ATP synthase upon partition to membranes containing cardiolipin. Molecular dynamics simulations suggest that EcDBS1R4 alters the membrane environment of the transmembrane FO motor, impairing cardiolipin interactions with the cytoplasmic face of the peripheral stalk that binds the catalytic F1 domain to the FO domain. The proposed mechanism of action, targeting membrane protein function through lipid reorganization may open new venues of research on the mode of action and design of other AMPs.