Applied Sciences (Dec 2022)

A New Research Scheme for Full-Scale/Model Test Comparisons to Validate the Traditional Wind Tunnel Pressure Measurement Technique

  • Xiao-Xiang Cheng,
  • Lin Zhao,
  • Shi-Tang Ke,
  • Yao-Jun Ge

DOI
https://doi.org/10.3390/app122412847
Journal volume & issue
Vol. 12, no. 24
p. 12847

Abstract

Read online

A new research scheme for a full-scale/model test comparison is proposed for effectively validating the wind tunnel pressure measurement technique in this article. With the new research scheme and using quantifiable data, future full-scale/model test comparisons are expected to reasonably disclose the main problem with the traditional atmospheric boundary layer wind tunnel pressure measurement technique with regard to the Reynolds number (Re) effects, the aero-elastic effects and the flow characteristic effects. Based on the engineering background of the Peng-cheng cooling tower, it was quantified by using the new research scheme that the average relative errors of the mean wind pressure coefficients are 52.39%, 1.87% and 35.91% for the Re effects, the aero-elastic effects and the flow characteristic effects, respectively. In view of the fluctuating wind pressure coefficients, the average relative errors are 97.58%, 21.14% and 20.20% for the Re effects, the aero-elastic effects and the flow characteristic effects, respectively. These suggest that Re effects are extremely significant for pressure measurement model tests of circular cylindrical structures, and flow characteristic effects are noticeable too. They should be mitigated using effective approaches, i.e., increasing the model surface roughness and placing the actively controlled devices at the beginning of the wind tunnel’s working section, respectively. Additionally, the key field measurement technique adopted (i.e., the calculation of the reference static pressure) and details of manufacturing the aero-elastic pressure measurement model for the present study are also expounded in the article for reference.

Keywords