Applied Sciences (Jan 2020)

An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications

  • Pablo Ferrada,
  • Sebastián Rodríguez,
  • Génesis Serrano,
  • Carol Miranda-Ostojic,
  • Alejandro Maureira,
  • Manuel Zapata

DOI
https://doi.org/10.3390/app10020531
Journal volume & issue
Vol. 10, no. 2
p. 531

Abstract

Read online

This work aimed to study the effects of static magnetic fields (SMFs) on cell cultures. A glass flask was filled with a liquid medium, which was surrounded by permanent magnets. Air was introduced through a tube to inject bubbles. Two magnet configurations, north and south, were used as perturbation. Scenedesmus obliquus and Nannochloropsis gaditana, growing in Medium 1 and 2, were subjected to the bubbly flow and SMFs. Differences between media were mainly due to conductivity (0.09 S/m for Medium 1 and 4.3 S/m for Medium 2). Joule dissipation ( P ) increased with the magnetic flux density ( B 0 ), being 4 orders of magnitude higher in Medium 2 than in 1. Conversely, the time constant ( τ P ) depended on B 0 , being nearly constant for Medium 1 and decreasing at 449 s/T for Medium 2. Dissipation occurred with the same τ P (235 s) in Medium 1 and 2 at B 0 = 0.5 T. In Species 1, the SMF effect was inhibitory. For Species 2, a higher enzymatic activity was observed. For superoxide dismutase, the relative difference was 78% with the north and 115% with the south configuration compared to the control values. For the catalase, differences of 29% with the north and 23% with the south configuration compared to control condition were obtained.

Keywords