Journal of High Energy Physics (Aug 2018)

On statistical models on super trees

  • A. S. Gorsky,
  • S. K. Nechaev,
  • A. F. Valov

DOI
https://doi.org/10.1007/JHEP08(2018)123
Journal volume & issue
Vol. 2018, no. 8
pp. 1 – 26

Abstract

Read online

Abstract We consider a particular example of interplay between statistical models related to CFT on one hand, and to the spectral properties of ODE, known as ODE/IS correspondence, on the other hand. We focus at the representation of wave functions of Schrödinger operators in terms of spectral properties of associated transfer matrices on “super trees” (the trees whose vertex degree changes with the distance from the root point). Such trees with varying branchings encode the structure of the Fock space of the model. We discuss basic spectral properties of “averaged random matrix ensembles” in terms of Hermite polynomials for the transfer matrix of super trees. At small “branching velocities” we have related the problem of paths counting on super trees to the statistics of area-weighted one-dimensional Dyck paths. We also discuss the connection of the spectral statistics of random walks on super trees with the Kardar-Parisi-Zhang scaling.

Keywords