Rapeseed Morpho-Physio-Biochemical Responses to Drought Stress Induced by PEG-6000
Maria Batool,
Ali Mahmoud El-Badri,
Zongkai Wang,
Ibrahim A. A. Mohamed,
Haiyun Yang,
Xueying Ai,
Akram Salah,
Muhammad Umair Hassan,
Rokayya Sami,
Jie Kuai,
Bo Wang,
Guangsheng Zhou
Affiliations
Maria Batool
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Ali Mahmoud El-Badri
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Zongkai Wang
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Ibrahim A. A. Mohamed
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Haiyun Yang
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Xueying Ai
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Akram Salah
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Muhammad Umair Hassan
Research Centre on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
Rokayya Sami
Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
Jie Kuai
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Bo Wang
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Guangsheng Zhou
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
Rapeseed is a valuable oil crop due to its high nutritious value and ample oil content. The current study provides a comparative analysis of 24 cultivars to better understand the performance and predict the adaptative mechanisms of drought-tolerant and drought-sensitive cultivars based on germination and morphophysiological traits during the early seedling stage using PEG-6000 simulated drought conditions. JYZ 158 and FY 520 (tolerant cultivars) and YG 2009 and NZ 1838 (sensitive cultivars) were selected to further explore the role of osmolytes and enzymatic activity in improving drought tolerance. This investigation illustrated that drought stress negatively influenced all studied cultivars; however, the degree of influence was different for each cultivar, suggesting their different potential for drought tolerance. Moreover, enzymatic and osmoregulatory mechanisms were highly efficient in tolerant cultivars compared to sensitive cultivars. Additionally, tolerant cultivars showed higher chlorophyll and lower malondialdehyde (MDA) contents versus sensitive cultivars under drought stress conditions. Higher drought tolerance coincided with higher enzymatic activity and osmolyte content. This work showed that JYZ 158 and FY 520 cultivars had higher drought tolerance, and might be a significant germplasm resource for breeding programs developing drought-tolerant rapeseed.