Mathematics (Oct 2021)

Super-Resolved Recognition of License Plate Characters

  • Sung-Jin Lee,
  • Seok Bong Yoo

DOI
https://doi.org/10.3390/math9192494
Journal volume & issue
Vol. 9, no. 19
p. 2494

Abstract

Read online

Object detection and recognition are crucial in the field of computer vision and are an active area of research. However, in actual object recognition processes, recognition accuracy is often degraded due to resolution mismatches between training and test image data. To solve this problem, we designed and developed an integrated object recognition and super-resolution framework by proposing an image super-resolution technique that improves object recognition accuracy. In detail, we collected a number of license plate training images through web-crawling and artificial data generation, and the image super-resolution artificial neural network was trained by defining an objective function to be robust to image flips. To verify the performance of the proposed algorithm, we experimented with the trained image super-resolution and recognition on representative test images and confirmed that the proposed super-resolution technique improves the accuracy of character recognition. For character recognition with the 4× magnification, the proposed method remarkably increased the mean average precision by 49.94% compared to the existing state-of-the-art method.

Keywords