IEEE Access (Jan 2020)

Combined Primary Frequency and Virtual Inertia Response Control Scheme of a Variable-Speed Dish-Stirling System

  • Yang Li,
  • San Shing Choi,
  • D. Mahinda Vilathgamuwa,
  • Binyu Xiong,
  • Jinrui Tang

DOI
https://doi.org/10.1109/ACCESS.2020.3017791
Journal volume & issue
Vol. 8
pp. 151719 – 151730

Abstract

Read online

The potential of variable-speed dish-Stirling (VSDS) solar-thermal generating plant in providing grid frequency support is investigated. In the proposed VSDS frequency support control scheme, the reference speed of the Stirling engine is regulated to track a deloaded power curve which is governed by the solar insolation level. The gain of a supplementary speed-frequency droop controller is then set to meet the primary frequency control requirement. Further uniqueness of the VSDS control scheme pertains to the provision of virtual inertia response by regulating the kinetic energy in the rotating mass of the engine-generator and the thermal energy in the heat absorber/receivers. Small-signal analysis shows that the frequency support scheme is inherently stable, and it will provide higher degree of damping as the penetration level of the VSDS system and/or the solar insolation level increase. The efficacy of the proposed scheme is validated by computer simulation.

Keywords