Infection and Drug Resistance (May 2024)
Evaluation of MeltPro Assay in Identification of Second-Line Injectable Drug Resistance in Multidrug-Resistant Tuberculosis Isolates
Abstract
Yan Hu,1 Min Yu,1 Guoqing You,1 Jun Fan,1 Huiwen Zheng2 1Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Chongqing, People’s Republic of China; 2Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, People’s Republic of ChinaCorrespondence: Jun Fan; Huiwen Zheng, Email [email protected]; [email protected]: We compared the MeltPro assay to whole-genome sequencing (WGS) to investigate the molecular characterization of second-line injectable drug (SLID) resistance in multidrug-resistant tuberculosis (MDR-TB) isolates in Chongqing, China.Methods: A total of 122 MDR-TB patient isolates were collected between March 2019 and June 2020 from Chongqing Municipality, China. Conventional drug-susceptibility testing was performed using the proportion method, followed to generate minimum inhibitory concentrations (MICs) of SLIDs determined by microplate alamarblue assay. All strains were subjected to both MeltPro and WGS assays.Results: Among 122 MDR-TB isolates, 30 (24.6%), 22 (18.0%), and 14 (11.5%) were resistant to kanamycin (KM), amikacin (AM), and capreomycin (CM), respectively. Of the 31 SLID-resistant isolates, 24 (77.4%, 24/31) isolates harbored mutations in the rrs gene, with the most prevalent mutations in rrs A1401G (22/24, 91.7%). Mutation in rrs A1401G was associated with high levels of resistance to KM (MIC, ≥ 40 μg/mL) and AM (MIC, ≥ 64 μg/mL), but disparities in CM-resistance levels. Using phenotypic drug-susceptibility testing as gold standard, we found that the overall sensitivity of MeltPro and WGS was 87.1% and 90.32% and specificity 100% and 97.8%, respectively. Seven isolates had discordant results between phenotypic and genotypic resistance of SLIDs.Conclusion: MeltPro is a promising diagnostic tool for accurate identification of SLID-resistant MTB isolates with mutations in the rrs and eis genes. There was a disparity between MeltPro with WGS results in the proportion of heterogeneous drug-resistant bacteria with rrs mutation and limited probes. Resistance mechanisms other than genetic mutations will affect the consistency of MeltPro and WGS with phenotypic drug-susceptibility results.Keywords: MDR, MeltPro, resistance, genotype