Scientific Reports (Aug 2022)
Large scale screening of CRISPR guide RNAs using an optimized high throughput robotics system
Abstract
Abstract All CRISPR/CAS systems utilize CRISPR guide RNAs (crRNAs), the design of which depend on the type of CAS protein, genetic target and the environment/matrix. While machine learning approaches have recently been developed to optimize some crRNA designs, candidate crRNAs must still be screened for efficacy under relevant conditions. Here, we demonstrate a high-throughput method to screen hundreds of candidate crRNAs for activation of Cas13a collateral RNA cleavage. Entire regions of a model gene transcript (Y. pestis lcrV gene) were tiled to produce overlapping crRNA sets. We tested for possible effects that included crRNA/target sequence, size and secondary structures, and the commercial source of DNA oligomers used to generate crRNAs. Detection of a 981 nt target RNA was initially successful with 271 out of 296 tested guide RNAs, and that was improved to 287 out of 296 (97%) after protocol optimizations. For this specific example, we determined that crRNA efficacy did not strongly depend on the target region or crRNA physical properties, but was dependent on the source of DNA oligomers used for RNA preparation. Our high-throughput methods for screening crRNAs has general applicability to the optimization of Cas12 and Cas13 guide RNA designs.