IEEE Access (Jan 2019)

Convolutional Sparse Coding Using Wavelets for Single Image Super-Resolution

  • Awais Ahmed,
  • She Kun,
  • Raheel Ahmed Memon,
  • Junaid Ahmed,
  • Getnet Tefera

DOI
https://doi.org/10.1109/ACCESS.2019.2936455
Journal volume & issue
Vol. 7
pp. 121350 – 121359

Abstract

Read online

In this paper, we propose the convolutional sparse coding based model in the wavelet domain for the task of single image super-resolution (SISR). The conventional sparse coding based approaches work on overlapping image patches and use the dictionary atoms to sparse code an image patch. Further, at the final stage, an overlap-add mechanism is used to get the final high-resolution image estimate. However, these algorithms fail to take into account the consistency present in the overlapping patches which limits their performance. We propose the use of wavelet integrated convolutional sparse coding approach where instead of dictionary atoms we utilize the convolution summations between the learned filters and their mappings for sparse representation based SISR. The use of wavelets is proposed owing to their unique directional and compact features. A pair of filters are learned along with a mapping function for each wavelet sub-band to exploit the consistency among patches. The proposed wavelet integrated convolutional sparse coding model helps capture useful contextual information. The proposed model is evaluated on publicly available datasets for different scale-up parameters. To show the efficacy of the proposed model we compare it with recent state-of-the-art algorithms. The visual results along with the quantitative ones indicate that the proposed model performs well for the tasks of super-resolution.

Keywords