Animal (Jan 2024)
Intrauterine growth restriction defined by increased brain-to-liver weight ratio affects postnatal growth and protein efficiency in pigs
Abstract
Intrauterine growth restriction (IUGR) refers to impaired foetal growth during gestation, resulting in permanent stunting effects on the offspring. This study aimed to investigate the effects of IUGR on growth performance, body composition, blood metabolites, and meat quality of pigs from birth (n = 268) to slaughter (n = 93). IUGR piglets have prioritised brain development as a foetal adaptive reaction to placental insufficiency. This survival mechanism results in a higher brain-to-liver weight ratio (BrW/LW). One day (±1) after birth, computed tomography (CT) was performed on each piglet to assess their brain and liver weights. A threshold value of 0.78 (mean + SD) was chosen to divide the piglets into two categories – NORM (BrW/LW 0.78). Moreover, each piglet was classified as either normal (score 1), mild IUGR (score 2), or severe IUGR (score 3) based on the head morphology. BW was recorded weekly, and average daily gain (ADG) was calculated for lactation, starter, grower, and finisher periods. Body composition was assessed after weaning (29.6 ± 0.7 d), at 20 kg (64 ± 7.2 d), 100 kg (165 ± 12.3 d), and on the carcasses using Dual-energy X-ray absorptiometry (DXA). Content and deposition rates of single nutrients, as well as energy and CP efficiency, were measured at 20 and 100 kg. Feed intake was recorded from 20 kg to slaughter. Meat quality was assessed on the carcasses. A total of 70% of the piglets assigned a score of 3 were NORM according to their BrW/LW. The IUGR category showed a lower ADG in the lactation (P < 0.01), starter (P = 0.07), and grower phases (P < 0.05) and a reduced CP efficiency in the grower–finisher period (P < 0.01) compared to the NORM group. IUGR pigs had a lower gain-to-feed ratio in the finisher period (P = 0.01) despite similar average daily feed intake, and they required more days (P < 0.01) to reach the slaughter weight. Additionally, their meat was darker (P = 0.01) than that of NORM pigs. The BrW/LW was inversely proportional to the ADG from birth to slaughter and negatively correlated with the CP deposition rate and efficiency in the grower–finisher period (P < 0.01). Furthermore, the higher the BrW/LW, the longer it took the pigs to reach the slaughter weight (P < 0.01). In conclusion, the identification of IUGR piglets based on the head morphology does not always agree with an increased BrW/LW. IUGR affects growth performance from birth to slaughter, CP efficiency in the grower–finisher period and meat quality.