Journal of King Saud University: Computer and Information Sciences (Jul 2023)
Implementation of a steganography system based on hybrid square quaternion moment compression in IoMT
Abstract
Internet of Medical Things (IoMT) systems generate medical data transmissions between patients, medical experts, and medical centers over public networks, which require high levels of security to protect the content of medical images and the personal information they contain. In this paper, we propose a new stego image encryption scheme based on a new secret image compression method, wavelet transformation, QR decomposition of the cover image, and a new chaotic map. The secret image is compressed by the Hahn-Krawtchouk hybrid quaternion square moments (HK-HQSM), which are optimized by a new hybrid metaheuristic algorithm based on the Salp Swarm Algorithm (SSA) and the Arithmetic Optimization Algorithm (AOA). To increase the security level when transmitting the proposed stego images over public networks, we introduce a new chaotic map based on the 2D fractional Henon map to encrypt the stego image. To demonstrate the effectiveness of the proposed steganography scheme for IoMT, we implemented this scheme on a low-cost Raspberry Pi 4 hardware board. The results of the performed numerical experiments show that our method is secure and provides exceptional robustness against common standard image processing attacks (steganalysis attacks). The results also demonstrate that our strategy is able to work efficiently and quickly when implemented on a Raspberry Pi board.