Life (May 2021)

Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance

  • Catharina van Heusden,
  • Barbara R. Grubb,
  • Brian Button,
  • Eduardo R. Lazarowski

DOI
https://doi.org/10.3390/life11050430
Journal volume & issue
Vol. 11, no. 5
p. 430

Abstract

Read online

Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.

Keywords