Bioengineering (May 2024)

Effect of Exposure to Particulate Matter on the Ocular Surface in an Experimental Allergic Eye Disease Mouse Model

  • Basanta Bhujel,
  • Seheon Oh,
  • Woojune Hur,
  • Seorin Lee,
  • Ho Seok Chung,
  • Hun Lee,
  • Jin Hyoung Park,
  • Jae Yong Kim

DOI
https://doi.org/10.3390/bioengineering11050498
Journal volume & issue
Vol. 11, no. 5
p. 498

Abstract

Read online

In response to the escalating concern over the effect of environmental factors on ocular health, this study aimed to investigate the impact of air pollution-associated particulate matter (PM) on ocular allergy and inflammation. C57BL/6 mice were sensitized with ovalbumin (OVA) topically and aluminum hydroxide via intraperitoneal injection. Two weeks later, the mice were challenged with OVA and exposed to PM. Three groups—naive, OVA, and OVA-sensitized with PM exposure (OVA + PM) groups—were induced to an Allergic Eye disease (AED) model. Parameters including clinical signs, histological changes, inflammatory cell infiltration, serum OVA-specific immunoglobulins E (IgE) levels, mast cells degranulation, cellular apoptosis and T-cell cytokines were studied. The results demonstrate that exposure with PM significantly exacerbates ocular allergy, evidenced by increased eye-lid edema, mast cell degranulation, inflammatory cytokines (IL-4, IL-5 and TNF-α), cell proliferation (Ki67), and serum IgE, polymorphonuclear leukocytes (PMN), and apoptosis and reduced goblet cells. These findings elucidate the detrimental impact of PM exposure on exacerbating the severity of AED. Noticeably, diminished goblet cells highlight disruptions in ocular surface integrity, while increased PMN infiltration with an elevated production of IgE signifies a systemic allergic response with inflammation. In conclusion, this study not only scientifically substantiates the association between air pollution, specifically PM, and ocular health, but also underscores the urgency for further exploration and targeted interventions to mitigate the detrimental effects of environmental pollutants on ocular surfaces.

Keywords