Applied Sciences (May 2022)

Life-Cycle Cost Analysis on Application of Asphalt and Concrete Pavement Overlay

  • Haekook Jung,
  • Topendra Oli,
  • Jeonghee Nam,
  • Kyongku Yun,
  • Seungwon Kim,
  • Cheolwoo Park

DOI
https://doi.org/10.3390/app12105098
Journal volume & issue
Vol. 12, no. 10
p. 5098

Abstract

Read online

Concrete pavement proportions are increasing in Korean expressways, resulting in increased maintenance cost. The length of degenerate concrete pavements that have exceeded the design life (20 years) was 1150 km in 2015 and 2605 km in 2020 and is expected to rapidly increase. To extend the service life of concrete pavements, life-cycle cost (LCC) analysis was conducted on asphalt and concrete overlays, based on the different maintenance methods. LCC analysis was performed when the shoulder was used and when it was not used between 6000 and 35,000 AADT traffic according to the two-lane and four-lane traffic. During overlay, one lane was completely blocked, and the value per vehicle was converted into the user cost using the Construction Analysis for Pavement Rehabilitation Strategies software, according to whether the shoulder was used to maintain the number of lanes. In addition, LCC analysis was conducted by examining the construction cost and life-cycle according to each overlay method. When the shoulder was used, the total construction cost decreased, owing to the reduction in user cost, indicating that the implementation of the traffic measure of using the road shoulder improves user satisfaction and cost. The asphalt overlay was observed to be more favorable than concrete overlay in terms of the initial total construction cost. However, under a 20-year cycle, the economic efficiency of concrete overlay was higher than that of asphalt overlay. After repairing the deteriorated target sections of concrete pavements, the overlay method (asphalt or concrete) ought to be selected according to the target service life for beneficial economic effect. Concrete overlay was to obtain about 20% or greater LCC effect compared to asphalt overlay, and at least 5% or more additional LCC effect obtained when the shoulder was used.

Keywords