Frontiers in Chemistry (Jul 2022)

Periodic Motion in the Chaotic Phase of an Unstirred Ferroin-Catalyzed Belousov Zhabotinsky Reaction

  • Florian Wodlei,
  • Mihnea R. Hristea,
  • Giuseppe Alberti

DOI
https://doi.org/10.3389/fchem.2022.881691
Journal volume & issue
Vol. 10

Abstract

Read online

The Belousov Zhabotinsky reaction, a self-organized oscillatory color-changing reaction, can show complex behavior when left unstirred in a cuvette environment. The most intriguing behavior is the transition from periodicity to chaos and back to periodicity as the system evolves in time. It was shown that this happens thanks due to the decoupling of reaction, diffusion and convection. We have recently discovered that, as the so-called chaotic transient takes place, periodic bulk motions in form of convective cells are created in the reaction solution. In this work we investigated this phenomenon experimentally by changing cuvette size and reaction volume, in order to allow different types of convection patterns to appear. So far, we have observed single and double convection cells in the system. There are indications that the convection patterns are connected to the duration of the chaotic phase. A simplified mathematical model confirms the form and dynamics of the observed convection cells and explains the connection between chemical chaos and hydrodynamical order.

Keywords