Remote Sensing (Mar 2023)

Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems

  • Zhaohua Liu,
  • Jiangping Long,
  • Hui Lin,
  • Kai Du,
  • Xiaodong Xu,
  • Hao Liu,
  • Peisong Yang,
  • Tingchen Zhang,
  • Zilin Ye

DOI
https://doi.org/10.3390/rs15071806
Journal volume & issue
Vol. 15, no. 7
p. 1806

Abstract

Read online

Tree crown diameter (CD) values, relating to the rate of material exchange between the forest and the atmosphere, can be used to evaluate forest biomass and carbon stock. To map tree CD values using meter-level optical remote sensing images, we propose a novel method that interprets the relationships between the spectral reflectance of pixels and the CD. The approach employs the spectral reflectance of pixels in the tree crown to express the diversity of inclination angles of leaves based on the radiative transfer model and the spatial heterogeneity of these pixels. Then, simulated and acquired GF-2 images are applied to verify the relationships between spatial heterogeneity and the tree CD. Meanwhile, filter-based and object-based methods are also employed to extract three types of variables (spectral features, texture features, and spatial heterogeneity). Finally, the tree CD values are mapped by four models (random forest (RF), K-nearest neighbor (K-NN), support vector machine (SVM), and multiple linear regression (MLR)), using three single types of variables and combinations of variables with different strategies. The results imply that the spatial heterogeneity of spectral reflectance is significantly positively correlated with tree CD values and is more sensitive to tree CD values than traditional spectral features and textural features. Furthermore, the ability of spatial heterogeneity to map tree CD values is significantly higher than traditional variable sets after obtaining stable features with appropriate filter window sizes. The results also demonstrate that the accuracy of mapped tree CD values is significantly improved using combined variable sets with different feature extraction methods. For example, in our experiments, the R2 and rRMSE values of the optimal results ranged from 0.60 to 0.66, and from 15.76% to 16.68%, respectively. It is confirmed that spatial heterogeneity with high sensitivity can effectively map tree CD values, and the accuracy of mapping tree CD values can be greatly improved using a combination of spectral features extracted by an object-based method and spatial heterogeneity extracted by a filter-based method.

Keywords