Open Heart (Feb 2023)

Identification of an increased lifetime risk of major adverse cardiovascular events in UK Biobank participants with scoliosis

  • James S Ware,
  • Declan P O’Regan,
  • Valentina Quintero Santofimio,
  • Adam Clement,
  • Kathryn A McGurk

DOI
https://doi.org/10.1136/openhrt-2022-002224
Journal volume & issue
Vol. 10, no. 1

Abstract

Read online

Background Structural changes caused by spinal curvature may impact the organs within the thoracic cage, including the heart. Cardiac abnormalities in patients with idiopathic scoliosis are often studied post-corrective surgery or secondary to diseases. To investigate cardiac structure, function and outcomes in participants with scoliosis, phenotype and imaging data of the UK Biobank (UKB) adult population cohort were analysed.Methods Hospital episode statistics of 502 324 adults were analysed to identify participants with scoliosis. Summary 2D cardiac phenotypes from 39 559 cardiac MRI (CMR) scans were analysed alongside a 3D surface-to-surface (S2S) analysis.Results A total of 4095 (0.8%, 1 in 120) UKB participants were identified to have all-cause scoliosis. These participants had an increased lifetime risk of major adverse cardiovascular events (MACEs) (HR=1.45, p<0.001), driven by heart failure (HR=1.58, p<0.001) and atrial fibrillation (HR=1.54, p<0.001). Increased radial and decreased longitudinal peak diastolic strain rates were identified in participants with scoliosis (+0.29, Padj <0.05; −0.25, Padj <0.05; respectively). Cardiac compression of the top and bottom of the heart and decompression of the sides was observed through S2S analysis. Additionally, associations between scoliosis and older age, female sex, heart failure, valve disease, hypercholesterolemia, hypertension and decreased enrolment for CMR were identified.Conclusion The spinal curvature observed in participants with scoliosis alters the movement of the heart. The association with increased MACE may have clinical implications for whether to undertake surgical correction. This work identifies, in an adult population, evidence for altered cardiac function and an increased lifetime risk of MACE in participants with scoliosis.