SAGE Open Medicine (Dec 2018)
Improving spatial working memory in blind and sighted youngsters using programmable tactile displays
Abstract
Objective: To investigate whether training with tactile matrices displayed with a programmable tactile display improves recalling performance of spatial images in blind, low-vision and sighted youngsters. To code and understand the behavioral underpinnings of learning two-dimensional tactile dispositions, in terms of spontaneous exploration strategies. Methods: Three groups of blind, low-vision and sighted youngsters between 6 and 18 years old performed four training sessions with a weekly schedule in which they were asked to memorize single or double spatial layouts, featured as two-dimensional matrices. Results: Results showed that all groups of participants significantly improved their recall performance compared to the first session baseline in the single-matrix task. No statistical difference in performance between groups emerged in this task. Instead, the learning effect in visually impaired participants is reduced in the double-matrix task, whereas it is still robust in blindfolded sighted controls. We also coded tactile exploration strategies in both tasks and their correlation with performance. Sighted youngsters, in particular, favored a proprioceptive exploration strategy. Finally, performance in the double-matrix task negatively correlated with using one hand and positively correlated with a proprioceptive strategy. Conclusion: The results of our study indicate that blind persons do not easily process two separate spatial layouts. However, rehabilitation programs promoting bi-manual and proprioceptive approaches to tactile exploration might help improve spatial abilities. Finally, programmable tactile displays are an effective way to make spatial and graphical configurations accessible to visually impaired youngsters and they can be profitably exploited in rehabilitation.