International Journal Bioautomation (Dec 2014)

Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

  • Satish Kumar,
  • Lingaraja Jena,
  • Sneha Galande,
  • Sangeeta Daf,
  • Ashok K. Varma

Journal volume & issue
Vol. 18, no. 4
pp. 315 – 324

Abstract

Read online

Cervical cancer caused by Human papillomavirus (HPV) is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG), Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

Keywords