Moldavian Journal of the Physical Sciences (Dec 2012)
Phonon transport in amorphous silicon nanowires
Abstract
Among the perspective research directions in modern physics, an important role is played by the investigation of amorphous nanostructures [1-3]. The effect of the drop in lattice thermal conductivity in these compounds can be used in thermoelectric applications [4, 5]. It is difficult both theoretically and practically to make in fact a distinction between truly amorphous solids and crystalline solids if the crystal sizes are very small [6]. Even amorphous materials have a certain short-range order at the atomic length scale due to the nature of chemical bonding. Furthermore, in very small crystals, a large fraction of the atoms are located at the crystal surface or near it; relaxation of the surface and interfacial effects distort the atomic positions and decrease the structural order.