Frontiers in Computational Neuroscience (Oct 2021)
Simulation and Mitigation of the Wrap-Around Artifact in the MRI Image
Abstract
Magnetic resonance imaging (MRI) is an essential clinical imaging modality for diagnosis and medical research, while various artifacts occur during the acquisition of MRI image, resulting in severe degradation of the perceptual quality and diagnostic efficacy. To tackle such challenges, this study deals with one of the most frequent artifact sources, namely the wrap-around artifact. In particular, given that the MRI data are limited and difficult to access, we first propose a method to simulate the wrap-around artifact on the artifact-free MRI image to increase the quantity of MRI data. Then, an image restoration technique, based on the deep neural networks, is proposed for wrap-around artifact reduction and overall perceptual quality improvement. This study presents a comprehensive analysis regarding both the occurrence of and reduction in the wrap-around artifact, with the aim of facilitating the detection and mitigation of MRI artifacts in clinical situations.
Keywords