Cell Death Discovery (Oct 2024)
TMEM209 promotes hepatocellular carcinoma progression by activating the Wnt/β-catenin signaling pathway through KPNB1 stabilization
Abstract
Abstract Hepatocellular carcinoma (HCC) is the most common malignancy in the liver, with a poor prognosis. Transmembrane protein 209 (TMEM209) involves multiple biological processes, such as substance transportation and signal transduction, and is abundantly expressed in tumor tissues. However, the relationship between TMEM209 and HCC has not been comprehensively elucidated. In this study, we aimed to illustrate this issue by in vitro and in vivo experiments. Bioinformatic analysis and clinical sample validation revealed that TMEM209 was upregulated in HCC and correlated with reduced survival duration. Functionally, TMEM209 promoted the proliferation, migration, invasion, and EMT of HCC cells in vitro and facilitated tumor growth and metastasis in xenograft models. Mechanistically, TMEM209 promoted the proliferation and metastasis of HCC in a KPNB1-dependent manner. Specifically, TMEM209 could bind to KPNB1, thereby competitively blocking the interaction between KPNB1 and the E3 ubiquitin ligase RING finger and CHY zinc finger domain-containing protein 1 (RCHY1) and preventing K48-associated ubiquitination degradation of KPNB1. Ultimately, the Wnt/β-catenin signaling pathway was activated, contributing to the progression of the malignant phenotype of HCC. In conclusion, the molecular mechanism underlying the TMEM209/KPNB1/Wnt/β-catenin axis in HCC progression was elucidated. TMEM209 is a potential biomarker and therapeutic target for HCC.