Pharmaceuticals (Apr 2023)

Technologies for Direct Detection of Covalent Protein–Drug Adducts

  • Elma Mons,
  • Robbert Q. Kim,
  • Monique P. C. Mulder

DOI
https://doi.org/10.3390/ph16040547
Journal volume & issue
Vol. 16, no. 4
p. 547

Abstract

Read online

In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein–drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein–drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.

Keywords