An ACE2/Mas-related receptor MrgE axis in dopaminergic neuron mitochondria
Rita Valenzuela,
Ana I. Rodriguez-Perez,
Maria A. Costa-Besada,
Rafael Rivas-Santisteban,
Pablo Garrido-Gil,
Andrea Lopez-Lopez,
Gemma Navarro,
Jose L. Lanciego,
Rafael Franco,
Jose L. Labandeira-Garcia
Affiliations
Rita Valenzuela
Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Corresponding author. Research Center for Molecular Medicine and Chronic diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Ana I. Rodriguez-Perez
Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
Maria A. Costa-Besada
Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain; Cell and Developmental Biology Department, University College London, London, UK
Rafael Rivas-Santisteban
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
Pablo Garrido-Gil
Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
Andrea Lopez-Lopez
Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain
Gemma Navarro
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
Jose L. Lanciego
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Neuroscience Department, Center for Applied Medical Research (CIMA, IdiSNA), University of Navarra, Pamplona, Spain
Rafael Franco
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
Jose L. Labandeira-Garcia
Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Corresponding author. Research Center for Molecular Medicine and Chronic diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
ACE2 plays a pivotal role in the balance between the pro-oxidative pro-inflammatory and the anti-oxidative anti-inflammatory arms of the renin-angiotensin system. Furthermore, ACE2 is the entry receptor for SARS-CoV-2. Clarification of ACE2-related mechanisms is crucial for the understanding of COVID-19 and other oxidative stress and inflammation-related processes. In rat and monkey brain, we discovered that the intracellular ACE2 and its products Ang 1–7 and alamandine are highly concentrated in the mitochondria and bind to a new mitochondrial Mas-related receptor MrgE (MrgE) to produce nitric oxide. We found MrgE expressed in neurons and glia of rodents and primates in the substantia nigra and different brain regions. In the mitochondria, ACE2 and MrgE expressions decreased and NOX4 increased with aging. This new ACE2/MrgE/NO axis may play a major role in mitochondrial regulation of oxidative stress in neurons, and possibly other cells. Therefore, dysregulation of the mitochondrial ACE2/MrgE/NO axis may play a major role in neurodegenerative processes of dopaminergic neurons, where mitochondrial dysfunction and oxidative stress play a crucial role. Since ACE2 binds SARS-CoV-2 spike protein, the mitochondrial ACE2/MrgE/NO axis may also play a role in SARS-CoV-2 cellular effects.