Physical Review Research (Jul 2022)
Hilbert space as a computational resource in reservoir computing
Abstract
Accelerating computation with quantum resources is limited by the challenges of high-fidelity control of quantum systems. Reservoir computing presents an attractive alternative, as precise control and full calibration of system dynamics are not required. Instead, complex internal trajectories in a large state space are leveraged as a computational resource. Quantum systems offer a unique venue for reservoir computing, given the presence of interactions unavailable in classical systems and a potentially exponentially-larger computational space. With a reservoir comprised of a single d-dimensional quantum system, we demonstrate clear performance improvement with Hilbert space dimension at two benchmark tasks and advantage over the physically analogous classical reservoir. Quantum reservoirs as realized by current-era quantum hardware offer immediate practical implementation and a promising outlook for increased performance in larger systems.