Geospatial Health (Dec 2022)

Spatiotemporal heterogeneity of SARS-CoV-2 diffusion at the city level using geographically weighted Poisson regression model: The case of Bologna, Italy

  • Addisu Jember Zeleke,
  • Rossella Miglio,
  • Pierpaolo Palumbo,
  • Paolo Tubertini,
  • Lorenzo Chiari,
  • Bologna MODELS4COVID Study Group of the University of Bologna and the National Institute for Nuclear Physics (INFN)

DOI
https://doi.org/10.4081/gh.2022.1145
Journal volume & issue
Vol. 17, no. 2

Abstract

Read online

This paper aimed to analyse the spatio-temporal patterns of the diffusion of SARS-CoV-2, the virus causing coronavirus 2019 (COVID-19, in the city of Bologna, the capital and largest city of the Emilia-Romagna Region in northern Italy. The study took place from February 1st, 2020 to November 20th, 2021 and accounted for space, sociodemographic characteristics and health conditions of the resident population. A second goal was to derive a model for the level of risk of being infected by SARS-CoV-2 and to identify and measure the place-specific factors associated with the disease and its determinants. Spatial heterogeneity was tested by comparing global Poisson regression (GPR) and local geographically weighted Poisson regression (GWPR) models. The key findings were that different city areas were impacted differently during the first three epidemic waves. The area-to-area influence was estimated to exert its effect over an area with 4.7 km radius. Spatio-temporal heterogeneity patterns were found to be independent of the sociodemographic and the clinical characteristics of the resident population. Significant single-individual risk factors for detected SARS-CoV-2 infection cases were old age, hypertension, diabetes and co-morbidities. More specifically, in the global model, the average SARS-CoV-2 infection rate decreased 0.93-fold in the 21–65 years age group compared to the >65 years age group, whereas hypertension, diabetes, and any other co-morbidities (present vs absent), increased 1.28-, 1.39- and 1.15-fold, respectively. The local GWPR model had a better fit better than GPR. Due to the global geographical distribution of the pandemic, local estimates are essential for mitigating or strengthening security measures.

Keywords