Notulae Botanicae Horti Agrobotanici Cluj-Napoca (Feb 2024)

Survey on nitrogenase evolution by considering the importance of nitrogenase, its structure, and mechanism of nitrogenase

  • Wenli SUN,
  • Mohamad Hesam SHAHRAJABIAN

DOI
https://doi.org/10.15835/nbha52113157
Journal volume & issue
Vol. 52, no. 1

Abstract

Read online

Nitrogenase is a complicated enzyme that actives the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3). The aim of this manuscript is to review the nitrogenase evolution with considering nitrogenase, structure of nitrogenase, action mechanism of nitrogenase and oxygen sensitive mechanism of nitrogenase. The searches focused on publications from 1980 to February 2023, using PubMed, Google Scholar, Science Direct, and Scopus databases. In the term of evolution, the nitrogen cycle has experienced highly changes; at the beginning of life and suggested the exact anoxic scenario, the comparatively sufficient ammonium was possibly used in an assimilation/mineralization cycle by protocellular organisms. The main nif gene products which are active in nitrogen fixation are nifH, nifD, nifK, nifT, nifY/nafY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, nifF, nifL, nifA, nifB, fdxN, nifQ, and nifJ. The main vnf gene products which are active in nitrogen fixation are vnfA, vnfE, vnfN, vnfX, vnfH, vnfFd, vnfD, vnfG, vnfK, and vnfY. Oxygen can be either detrimental or beneficial for diazotrophs in organisms suitable for an aerobic catabolism, and it supports the production of a substrate for nitrogenase (ATP), but it can also impede the activity and suppress the synthesis of this enzyme.

Keywords