Cells (Oct 2024)

Enhanced Anti-Melanoma Activity of Nutlin-3a Delivered via Ethosomes: Targeting p53-Mediated Apoptosis in HT144 Cells

  • Arianna Romani,
  • Giada Lodi,
  • Fabio Casciano,
  • Arianna Gonelli,
  • Paola Secchiero,
  • Giorgio Zauli,
  • Olga Bortolini,
  • Giuseppe Valacchi,
  • Daniele Ragno,
  • Agnese Bondi,
  • Mascia Benedusi,
  • Elisabetta Esposito,
  • Rebecca Voltan

DOI
https://doi.org/10.3390/cells13201678
Journal volume & issue
Vol. 13, no. 20
p. 1678

Abstract

Read online

This study evaluated ethosomes as a novel nanodelivery system for nutlin-3a, a known MDM2 inhibitor and activator of the p53 pathway, to improve nutlin-3a’s poor solubility, limiting its bio-distribution and therapeutic efficacy. The potential of nutlin-3a-loaded ethosomes was investigated on two in vitro models of melanoma: the HT144 cell line p53wild-type and the SK-MEL-28 cell line p53mutated. Nutlin-3a-loaded ethosomes were characterized for their physicochemical properties and used to treat melanoma cells at different concentrations, considering nutlin-3a solution and empty ethosomes as controls. The biological effects on cells were evaluated 24 and 48 h after treatment by analyzing the cell morphology and viability, cell cycle, and apoptosis rate using flow cytometry and the p53 pathway’s activation via Western blotting. The results indicate that ethosomes are delivery systems able to maintain nutlin-3a’s functionality and specific biological action, as evidenced by the molecular activation of the p53 pathway and the biological events leading to cell cycle block and apoptosis in p53wild-type cells. Nutlin-3a-loaded ethosomes induced morphological changes in the HT144 cell line, with evident apoptotic cells and a reduction in the number of viable cells of over 80%. Furthermore, nutlin-3a-loaded ethosomes successfully modulated two p53-regulated proteins involved in survival/apoptosis, with up to a 2.5-fold increase in membrane TRAIL-R2 and up to an 8.2-fold decrease in Notch-1 (Notch intracellular domain, NICD) protein expression. The expression of these molecules is known to be altered or dysfunctional in a large percentage of melanoma tumors. Notably, ethosomes, regardless of their nutlin-3a loading, exhibited the ability to reduce HT144 melanoma cellular migration, as assessed in real time using xCELLigence, likely due to the modification of lipid rafts, suggesting their potential antimetastatic properties. Overall, nutlin-3a delivery using ethosomes appears to be a significantly effective means for upregulating the p53 pathway and downregulating active Notch-1, while also taking advantage of their unexpected ability to reduce cellular migration. The findings of this study could pave the way for the development of specific nutlin-3a-loaded ethosome-based medicinal products for cutaneous use.

Keywords