Remote Sensing (Nov 2023)

Constructing a Regional Ionospheric TEC Model in China with Empirical Orthogonal Function and Dense GNSS Observation

  • Bo Xiong,
  • Yuxiao Li,
  • Changhao Yu,
  • Xiaolin Li,
  • Jianyong Li,
  • Biqiang Zhao,
  • Feng Ding,
  • Lianhuan Hu,
  • Yuxin Wang,
  • Lingxiao Du

DOI
https://doi.org/10.3390/rs15215207
Journal volume & issue
Vol. 15, no. 21
p. 5207

Abstract

Read online

Using Global Navigation Satellite Systems (GNSS) observation data for developing a high-precision ionospheric Total Electron Content (TEC) model is one of the essential subjects in ionospheric physics research and the application of satellite navigation correction. In this study, we integrate the Empirical Orthogonal Function (EOF) method with the TEC data provided by the Center for Orbit Determination in Europe (CODE), and observed by the dense GNSS receivers operated by the Crustal Movement Observation Network of China (CMONOC) to construct a regional ionospheric TEC model over China. The EOF analysis of CODE TEC in China from 1998 to 2010 shows that the first-order EOF component accounts for 90.3813% of the total variation of the ionospheric TEC in China. Meanwhile, the average value of CODE TEC is consistent with the spatial and temporal distribution characteristics of the first-order EOF base function, which mainly reflects the latitude and diurnal variations of TEC in China. The first-order coefficient after EOF decomposition shows an obvious 11-year period and semi-annual variations. The maximum amplitude of semi-annual variation mainly appears in March and October, which is closely associated with the variation in geographical longitude, the semi-annual change of the low-latitude electric field, and the ionospheric fountain effect. The second-order coefficient has an evident annual variation, the minimum amplitude mainly occurs in March, August, and September, and the amplitude values in the high solar activity years are more significant than those in the low solar activity years. The third-order coefficient mainly shows the characteristics of annual variation, and the fourth-order coefficient shows the noticeable semi-annual and annual variations. The third and fourth-order coefficients are both modulated by the solar activity index F10.7. The ionospheric TEC model in China, driven by CMONOC real-time GNSS observation data, can better reflect the latitude, local time and seasonal variation characteristics of ionospheric TEC over China. In particular, it can clearly show the spring and autumn asymmetry of ionospheric TEC in the low latitudes. The root mean square error of the absolute error between the model and the actual observation is mainly distributed around 2.45 TECU (1 TECU = 1016 electrons/m2). The values of the TEC model constructed in this study are closer to the actual observed values than those of the CODE TEC in China.

Keywords