Microorganisms (Dec 2023)

Isolation and Identification of Culturable Bacteria from South China Seawater and Preliminary Screening of Marine Biocontrol Bacteria

  • Limei Guan,
  • Hongxiu Wang,
  • Junhui Chen,
  • Feiying Yang,
  • Jian Yang,
  • Jianghuai Li,
  • Liang Jin

DOI
https://doi.org/10.3390/microorganisms11122933
Journal volume & issue
Vol. 11, no. 12
p. 2933

Abstract

Read online

Marine microorganisms have evolved special metabolic pathways to produce numerous bioactive substances with novel structures and unique functions. This study analyzed the diversity of culturable bacteria in marine water samples from the South China Sea and screened the isolated bacteria with pathogenic fungi. A total of 200 culturable strains of 72 different bacteria were obtained from 56 water samples from the South China Sea. They belonged to three phyla and four classes, namely Gammaproteobacteria, Alphaproteobacteria, Bacilli and Actinomycetia. Bacilli was the dominant class, comprising up to 59.72%, followed by Gammaproteobacteria (20.83%). Bacillus, Pseudomonas, Paenibacillus and Rhizobium were the most dominant genera. Among these strains, HY-88 and HY-91 encoding BamC, FenB and PKSI genes were selected and identified as Bacillus subtilis. The respective inhibition rates of the HY-88 caused by plate confrontation against Magnaporthe grisea, Fusarium oxysporum, Botrytis cinerea, anthrax and Botrytis cinerea were 90.91%, 54.29%, 52.17% and 51.72%, in comparison with HY-91 86.36%, 48.57%, 47.83% and 34.48%. In addition, the supernatant of HY-88 showed a lesion inhibition rate of 74.5%, which was significantly higher than HY-91 (60.55%). In addition, HY-88 and HY-91 showed strong antifungal activity to Colletotrichum viniferum on detached Shine Muscat grapes. Tolerance tests showed that the HY-88 and HY-91 grew at 10–40 °C, 7–10% NaCl and pH 3-11. HY-88 and HY-91 could inhibit various fungal plant diseases, which lays a foundation for the development of new biopesticides.

Keywords