Scientific Reports (Jun 2024)

A comprehensive epigenetic network can influence the occurrence of thyroid-associated ophthalmopathy by affecting immune and inflammatory response

  • Zhuo Zhang,
  • Hongshi Wu,
  • Xun Gong,
  • Yuerong Yan,
  • Xiaohui Li,
  • Rongxue Yang,
  • Muchao Wu,
  • Mingtong Xu

DOI
https://doi.org/10.1038/s41598-024-64415-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The primary objective of this study is to understand the regulatory role of epigenetics in thyroid-associated ophthalmopathy (TAO) using multi-omics sequencing data. We utilized tRFs sequencing data, DNA methylation sequencing data, and lncRNA/circRNA/mRNA sequencing data, as well as several RNA methylation target prediction websites, to analyze the regulatory effect of DNA methylation, non-coding RNA, and RNA methylation on TAO-associated genes. Through differential expression analysis, we identified 1019 differentially expressed genes, 985 differentially methylated genes, and 2601 non-coding RNA. Functional analysis showed that differentially expressed genes were mostly associated with the PI3K signaling pathway and the IL17 signaling pathway. Genes regulated by DNA epigenetic regulatory networks were mainly related to the Cytokine-cytokine receptor interaction pathway, whereas genes regulated by RNA epigenetic regulatory networks were primarily related to the T cell receptor signaling pathway. Finally, our integrated regulatory network analysis revealed that epigenetics mainly impacts the occurrence of TAO through its effects on key pathways such as cell killing, cytokine production, and immune response. In summary, this study is the first to reveal a new mechanism underlying the development of TAO and provides new directions for future TAO research.

Keywords